The Effect of a Nonuniform Planetary Albedo on the Interpretation of Earth Radiation Budget Observations
نویسندگان
چکیده
The flux density measured at satellite altitude with a fixed field of view radiometer differs from the true flux density reflected by the earth-atmosphere system within the field of view of the radiometer. This difference is due to angular response characteristics ofthe radiometer, solid angle effects due to geometry, and angular reflectance effects of the earth-atmosphere system. All of these effects lead to uncertainties in the interpretation of instantaneous earth radiation budget measurements. The differences between the true flux density and the measured flux density are shown to be significant when the field of view of the radiometer is large and when the atmosphere has a nonuniform, or spatially dependent, reflectance (albedo). A simulation experiment is described whereby the scene within the field of view of a nadir looking sensor is divided into a large number of equal area elements, each of which reflects radiation with one of two different reflectance models (corresponding to cloud-free and cloudy areas). The conditional mean values of the measured flux density, given values of the true flux density, are shown to differ significantly from the conditional means of the inverse problem, that of finding the mean value of the true flux density given a value for the measured flux density. The differences between the true flux density and the measured flux density are examined as a function of satellite altitude, field of view of the radiometer and solar zenith angle (including the effects of a terminator within the field of view) for both Lambertian and non-Lambertian
منابع مشابه
An update on Earth’s energy balance in light of the latest global observations
691 Earth’s climate is determined by the flows of energy into and out of the planet and to and from Earth’s surface. Geographical distributions of these energy flows at the surface are particularly important as they drive ocean circulations, fuel the evaporation of water from Earth’s surface and govern the planetary hydrological cycle. Changes to the surface energy balance also ultimately contr...
متن کاملObservational determination of albedo decrease caused by vanishing Arctic sea ice.
The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wi...
متن کاملCloud-radiative forcing and climate: results from the Earth radiation budget experiment.
The study of climate and climate change is hindered by a lack of information on the effect of clouds on the radiation balance of the earth, referred to as the cloud-radiative forcing. Quantitative estimates of the global distributions of cloud-radiative forcing have been obtained from the spaceborne Earth Radiation Budget Experiment (ERBE) launched in 1984. For the April 1985 period, the global...
متن کاملConsistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation
[1] The evaluation of the first available satellite-based global albedo product at 1-km resolution is essential for its application in climate studies. We evaluate the accuracy of the Moderate-Resolution Imaging Spectroradiometer (MODIS) albedo product using available field measurements at Surface Radiation Budget Network (SURFRAD) and Cloud and Radiation Testbed–Southern Great Plains (CART/SGP...
متن کاملSatellite-based estimate of the direct and indirect aerosol climate forcing
[1] The main uncertainty in anthropogenic forcing of the Earth’s climate stems from pollution aerosols, particularly their ‘‘indirect effect’’ whereby aerosols modify cloud properties. We develop a new methodology to derive a measurement-based estimate using almost exclusively information from an Earth radiation budget instrument (CERES) and a radiometer (MODIS). We derive a statistical relatio...
متن کامل